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Abstract 
 

In this research a recent developed practical modeling technique is applied for the glucose regulation system 
identification. By using this technique a set of mathematical models is obtained instead of single one to compensate for 
the  loss of information caused by the optimization technique in curve fitting algorithms, the diversity of members 
inside the single set is interpreted in term of restricted range of its parameters, also a diagnosis criteria is developed for 
detecting any disorder in the glucose regulation system by investigating the influence of variation of the parameters on 
the response of the system, this technique is applied in this research practically  for 20 cases with association of  
National Center for Diabetes / Al Mustanseryia University.  
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1. Introduction 
 
In the last decades, there was an increasing 

demand to obtain a quantitative technique to study 
physiological systems, for the purposes of 
diagnosis, therapy, and research. One of the most 
important techniques that was developed is the 
compartmental modeling, which is a description 
to dynamic behavior of physiological systems in 
term of differential equations based on mass 
balance equations; these differential equations 
represent the relationship between exogenous or 
endogenous material as inputs and the resulted 
states of physiological system as outputs. The 
compartmental model was first derived to 
describe the kinetics of isotopic tracer, science 
then it was extensively used to deal with wide 
spectrum of problems in this field, and this can be 
tracked in [1, 2, 3, and 4]. Compartmental model 
can be obtained by lumping materials with same 
characteristics into collections, this will reduce the 
physiological system into compartments, which 
can be defined as well mixed and kinetically 
homogenous materials, and interconnections 

between them, these interconnections represents 
the flux of influence from one compartment to 
another.   

The recent development in system 
identification technique has been posed in 
compartmental modeling. According to system 
identification theory  problem of  physiological 
modeling can be solved through two tasks, first 
the system specification should be featured by a 
mathematical model derived from the mass 
balance equations, secondly the parameters of this 
mathematical model should be calculated by using 
the experimental data. The main challenge in the 
above process is the inherent nonlinearity in 
physiological system, which is obvious in 
experimental data; on the other hand a linearized 
model for these systems exhibits a high degree of 
uncertainty because of the information loss in the 
process of linearization. A new algorithm is 
presented in [5], this algorithm solved this 
problem by representing nonlinear system by a 
linear model with perturbed coefficients, and this 
results a family of models which can cover all 
aspects of nonlinearity. 
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Diabetes is one of the most threatening 
diseases that human face. It is considered one of 
the major reasons for kidney failure, blindness 
and limbs amputation. The growth of population 
and the resulted degradation in health care system, 
limitation of normal life activity because of the 
advance in technology, and obesity are the main 
reasons for the worldwide spreading of this 
disease, so the importance of formulating a robust 
mathematical model for the glucose regulation 
system has been grown over the past decades. 
This model is derived with the aid of experiments 
which track the behavior of the glucose 
concentration after applying an intentioned 
perturbation in it by specific oral or intravenous 
dose of glucose.  

 
 

2. Theory   
 

The problem of glucose system regulation in 
term of perturbed coefficients can be 
characterized generally as follows: 
For any experimental set of data obtained from 
tracking blood glucose concentration after an oral 
dosage of glucose for fasting person [5]:  (  )             i = 1,2, … , N.                N: No. of data. let   ( )be the nominal function that represents  these data, such that   ( ) =        +        +. . +           …(1)  : number of compartments.   ,   : constant coef icients. there is family of mathematical models:  ( ) ∶=    ( ):    ∈    ,   ,    ∈    ,         ,   : upper bound of  th coef icient.   ,   : lower bound of  th coef icient. for  = 1,2, … , . 
The above problem can be solved by an algorithm 
of three steps: 

1. System specification. 
2. Nominal parameters estimation. 
3. Perturbation ranges calculations. 
 
2.1. System Specification [6]  

 
Consider a general physiological system with n 

compartments as seen in fig (1): 
 

 
Fig. 1. General Compartmental Model. 

 
  ̇ =    −     −    +                                …(2) 

 

Where:    =     
      

     ,          =      
      

 

  : i  exogenous input.    : output  lux of i   compartment.    : transferring  lux from compartment   to   .    : transferring  lux from compartment   to   . 
 

By assuming that this model represents the 
linearized version of physiological system, then 
all transferring flux functions can be substituted 
by linear functions of compartments masses as 
follows: 
    =                                                            …(3)    =                                                             …(4)    =                                                            …(5) 
 

By substituting eq. (3) to (5) into eq. (2): 
  ̇ =  ∑             −∑             −     +      …(6) 

 

After rearranging Eq. (6): 
  ̇ =  ∑             −  ∑           +       +     …(7) 

 

By assuming that: 
    = −  ∑           +                                      …(8) 

 

After substituting Eq. (8) in Eq. (7), yields: 
  ̇ =  ∑          +                                        …(9) 
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The state space representation for n 
compartments according to the above set of first 
order differential equations is: 
  ̇ =    +                                                  …(10) 
 

Where:  = [      …     ]   
   =     ⋯    ⋮ ⋱ ⋮   ⋯      
   = [   …    ]  
 

Since the experimental data consider the 
compartments concentration, the nominal output 
equation is: 
   =                                                           …(11) 
 

Where:  = [    …    ]  
 

Where: V : Volume of i   compartment. 
 

The solution for above state space system 
provides a qualitative understanding for the 
dynamic specifications of physiological system, 
so for the following state transition matrix: 
  ( ) = ℒ  [  −  ]                                  …(12) 
 

The time course of compartment concentration as 
a response to impulse exogenous input can be 
obtained by: 
   ( ) =   [ ( ) (0) +  ( )   ]               …(13) 
 where:  ∶ Amplitude of the impulse exogenous input .  
 

eq. (13) results:   ( ) =          
    

 
2.2. Nominal Parameters Estimation [7] 

 
For this task, the Least Square Fit algorithm is 

used, a brief description for this algorithm, that is 
the process of curve fitting for data set that 
contains a significant amount of noise and this can 
be done by minimizing the following function: 

  (  ,  , … ,   ,  ) = ∑    [ (  )−   (  )]        
                                                                                …(14) 

Where   the weight of experimental data. 
optimal set of parameters can be obtained by 
solving the following equation: 
      = 0      = 1,2, … ,                                      …(15) 
 

The above notation implies that we already have 
mathematical form of   ( ), which was derived 
previously. 
 
2.3. Perturbation Ranges Calculations 

[5,8,9] 
 
Since least square fit is an optimization 

technique, then the resulted function doesn't give 
a full representation to all experimental data, to 
overcome this weakness in the mathematical 
model, all unrepresented information will be 
modeled as a weighted perturbation range for each 
parameter, so each parameter will be limited by 
upper and lower bound, this problem can be 
formulated as follows: 
    ∈    ,       
    ∈    ,     
 where:   =    +                                                 …(16)   =    −                                                 …(17)   =     +                                                 …(18)   =    −                                                       …(19)     ,   : wights of perturbation.     ,     : lower limits of perturbation.     ,     : upper limits of perturbation. for  = 1,2, … , .   
For mathematical convenience, weights will be 
represented as: 

ω  = [ω  ω  ω  … … … …ω  ] ×  

ω  = [ω  ω  ω  … … … …ω  ] ×  

While perturbations will be represented as:   ̅   =  [               … … … …     ] ×    ̅   =  [               … … … …     ] ×  
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a) Weights Selection  
 
The problem of finding appropriate weight is 

considered in this part. Weight selection is 
extremely important for minimizing the family of 
models, by eliminating unnecessary members. 
Each parameter in the nominal function has its 
particular weight, which is defined as the average 
value of deflections, which occur in nominal 
function at each time of experimental data, caused 
by small variation in that parameter.  ∆  represents the error between nominal 
function and experimental data. 
 ∆ =  (  )−    (  )                                           …(20) for  = 1,2, … , . 
 

Sensitivity of nominal function to particular 
parameter can be defined as: 
    =     ( )                                                            …(21)    =     ( )                                                            …(22) 

  for  = 1,2, … , .  
 

Now the participation of each parameter in the 
error between the nominal function and 
experimental data can be calculated from: 
 ∆   = ∆ ∗                                                         
…(23) ∆   = ∆ ∗                                                         
…(24) 
     =    ∑    + ∑             

    =    ∑    + ∑             

 for  = 1,2, … , . for  = 1,2, … , . 
 ∆   , ∆   : the De lection in the nominal function  caused by variation in parameter    or    at each  experimental data  . 

For mathematical simplicity, matrix notation 
will be used in calculation of weights, so first we 
construct    ,     and ∆ are constructed as follows: 

   =       ⋯      ⋮ ⋱ ⋮     ⋯        ×         

    =       ⋯      ⋮ ⋱ ⋮     ⋯        ×  

∆ = [  ∆ ∆ … ∆   ∆ ] ×  The perturbation in nominal function which  is de ined as: ∆  = [∆   ∆   ∆   … …∆   ] ×  ∆  = [∆   ∆   ∆   … …∆   ] ×  and can be calculated as follows: ∆  = ∆ ∗                                                         …(25) ∆  = ∆ ∗                                                         …(26) Finally the weight of perturbation is: 
ω  =   ∗ ∆                                                     …(27)        = [         … …   ] ×  

ω  =   ∗ ∆                                                       …(28)        = [         … …   ] ×  

 
b) Parameter Interval Identification 

 
In this part the range of parameter perturbation 

is calculated, and this can be done by solving the 
following equation for the variable     &      at 
each time of experimental data:  (  ) = (  +       ) (         ) +⋯+                (  +       ) (         )             …(29) 
 

The solution of above n variables can be 
estimated according to the following: Lets de ine the ℓ   range of perturbation in  ̅ ∶ 
   ̅ =  0,   ≠ ℓ ̂ ℓ,  = ℓ

                                                 …(30) 
   ̅ =  0,   ≠ ℓ  ̂ℓ,  = ℓ

                                         … (31) 
 for  = 1,2, … , . by substituting eq. (30)in(29), yields ∶  (  ) =       +⋯+  ℓ    ℓ   +               ( ℓ +  ℓ ̂ℓ)  ℓ +                ℓ    ℓ   +⋯+                          …(32) by substituting eq. (31)in(29), yields ∶ 



Mustaffa Mohammed Basil                  Al-Khwarizmi Engineering Journal, Vol. 9, No.1, P.P. 47-59 (2013) 

 
51 
 

 (  ) =       +⋯+  ℓ    ℓ   +                  ℓ ( ℓ   ℓ  ℓ) +                 ℓ    ℓ   + ⋯+                       …(33) 

Solving eq. (31) and (33) yields  ̂ ℓ and  ̂ ℓ, 
which represents the maximum deflection in ℓ   
parameter caused by the difference between 
experimental data and nominal function. 

The actual value of deflection can be 
calculated by using the following equation:   ℓ =   ̂ ℓ ∗    ℓ∑     ∑                                        …(34) 

  ℓ =   ̂ ℓ ∗    ℓ∑     ∑                                        …(35) for  = 1,2, … , . Now, for( ℓ = 1,2, … , ), we will have ∶    ̅ℓ =  [            … …    ] ×    ̅ℓ =  [            … …    ] ×  for  upper and lower range of perturbation  for parameters respectively      = max  { 0,    }     = min  { 0,    }     = max  { 0,    }     = min  { 0,    } 

 
 

3. Experimental Results for Oral Glucose                                                                                                   
Tolerance Test 

 
In order to maintain glucose concentration in 

an adequate level, two hormones are functioning 
opposite to each other inside the human body, the 
first hormone is Glucagon, which is produced by a 
pancreatic islets called Alpha Cells, the secreting 
of this hormone stimulate the liver to convert the 
stored glycogen into glucose and release it to the 
blood, on the other hand the second hormone 
which is called Insulin, produced by a pancreatic 
islets called Beta Cells, this hormone assist in 
assimilation   of the glucose. 

The best approach to obtain data for glucose 
regulation system modeling, is to observe time 
response of glucose utilization in blood, one of the 
ways to do that is the Oral Glucose Tolerance Test 
(OGTT), it is based on applying oral dosage of 
glucose, which can be modeled mathematically as 

impulse function, then the glucose concentration 
in blood with measuring is measured appropriate 
sampling rate. 

Since only the blood glucose concentration 
will be taken in consideration, then one 
compartment can represent the system here, and 
the best function that can be fitted to the 
experimental data is:   ( ) =                                                           …(36) 

In this research, OGTT test is carried out for a 
20 person, in association with the National Center 
for Diabetes / Al Mustanseryia University. The 
results of the OGTT test base on 75 of oral 
glucose are exhibited in Table(1). 

After substituting resulted values (for each 
case in the table above) in eq. (43), the result will 
be a family of mathematical models for each case. 
The family members are bounded by the 
following two boarder models:  ( ) =                                                            …(37)  ( ) =   e                                                        …(38)  <   <   

Where:  ∶ upper limit of the family of models.  : lower limit of the family of models. 
The above argument can be proved practically 

in Fig. (2) to (21), which represent the time 
response of glucose regulation system for the 20 
cases, in these figures, the dotted blue line 
represents the experimental data, while the upper 
red line represents the upper bound in Eq. (37), 
the lower red line represents the lower bound in 
Eq. (38), and the middle red line represents the 
nominal values in Eq. (36). 
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Table1, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

4. Discussions   
 
Since the least square fit is an optimization 

technique, there is a certain level of information 
loss which can be useful in describing the 
dynamic of the system. In the control point of 
view the process of evaluating any system take 
into consideration two main characteristics, 
stability and performance.  

a. Stability: The glucose regulation system with 
parametric uncertainty is stable if and only if all 
the members of this family of models are stable, 
this means that for stability:  < 0                                                                     …(39) 

According to Eq. (36), the stability mainly 
counts on the values of parameter  , any negative 
value in its range, indicates a possibility of 
instability in the glucose regulation system.  In the 
results in section 3, there are seven cases with 

such possibility which are cases 2, 3, 11, 15, 17, 
19, and 20. 

If equal weights are assigned for the 
possibilities of the values of   , the possibility of 
instability for glucose regulation system  % for 
all cases which exhibit negative values of    can 
be calculated according to the following equation:   % =         ∗ 100%                                         …(40) 

Table (2) shows the possibility of instability for 
all tested cases: 

 
 
 
 
 
 
 

 
 

   No.             

1 185.966 185.970 173.702 0.00550 0.0150 0.00260 

2 168.084 168.086 164.000 0.00220 0.00430 -0.00210 

3 167.437 170.000 167.436 0.00117 0.00214 -0.00022 

4 188.748 196.000 188.746 0.00308 0.00658 0.00155 

5 187.855 192.338 187.846 0.00517 0.0159 0.00235 

6 168.276 173.000 168.2747 0.00480 0.00578 0.00367 

7 180.478 180.479 180.000 0.00327 0.00448 0.000820 

8 189.348 189.3486 185.978 0.000900 0.00155 0.000159 

9 200.819 200.818 184.387 0.00421 0.00800 0.00328 

10 164.346 164.3465 161.000 0.00460 0.00512 0.00389 

11 150.763 168.000 150.7619 0.000793 0.00730 -0.000687 

12 222.484 222.486 208.982 0.00776 0.0106 0.00457 

13 152.920 154.5770 152.9182 0.00232 0.00494 0.00138 

14 171.227 173.715 171.2226 0.00351 0.00794 0.00185 

15 142.161 142.164 142.000 0.00340 0.00655 -0.00112 

16 162.767 168.000 162.7656 0.00255 0.00770 0.000780 

17 134.7700 137.000 134.7680 0.00187 0.00358 -0.000607 

18 188.458 193.161 188.456 0.00425 2.7964 0.00269 

19 150.430 155.5115 150.4245 0.00289 0.00922 -0.000391 

20 176.8654 176.8686 168.7136 0.00214 0.00638 -0.002122 
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Table 2, 
 

 

b. Performance: fast reaction to any sudden 
increase in blood glucose level is adopted in this 
research to evaluate the performance of the 
glucose regulation system, this means that the 
performance mainly depends on the decay rate  .  

The normal results for the OGTT adopted by 
the National Center for Diabetes / Al 
Mustanseryia University mention in Table (3). 

By using the recommended values in the above 
table and solving eq. (36) for the value of  ′:  ′ = −   ′ ln  ′          for   > Y′                          …(41) 

Where: 

 : initial experimental value.  ′: recommended decay rate for normality. 
So for normality:  >  ′                                                           …(42) 

Table (4) shows initial values of experimental 
glucose concentration, the recommended value for 
each tested case, the experimental value for the 
decay rate, and the status of each case according 
to the condition in eq. (42).  

 

 

 

 

 

 

 

 

Case No. Initial Value (    ) Recommended Decay 
Rate 

Experimental Decay  

Rate 
Status 

1 174 0.001811774 0.0026 normal 

2 164 0.001318533 -0.0021 abnormal 

3 170 0.001617967 -0.00022 Abnormal 

4 196 0.002803935 0.00155 Abnormal 

5 196 0.002803935 0.00235 Abnormal 

6 173 0.001763743 0.00367 Normal 

7 180 0.002094287 0.00082 Abnormal 

8 186 0.002367535 0.000159 Abnormal 

9 190 0.002544847 0.00328 Normal 

10 161 0.001164683 0.00389 Normal 

11 168 0.001519346 -0.000687 Abnormal 

12 209 0.003339099 0.00457 Normal 

13 155 0.000848189 0.00138 Normal 

14 174 0.001811774 0.00185 Normal 

15 142 0.000118205 -0.00112 Abnormal 

16 168 0.001519346 0.00078 Abnormal 

17 137 0.001040165 -0.000607 Abnormal 

18 186 0.002367535 0.00269 Normal 

19 156 0.00090178 -0.000391 abnormal 

20 170 0.001617967 -0.002122 abnormal 
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Table 3, 

 
Table 4, 

 

 
 
5. Conclusions  

 
In the control point of view the process of 

evaluating any system take into consideration two 
main characteristics, stability and performance, 
according to these two main points a new 
diagnosis criteria can be concluded from the 
results for detecting any disorder in glucose 
regulation system, based on the range of 
perturbation for parameters in its mathematical 
model. 

 

 

  

 

 

 
 

Fig. 2. The Time Response of Glucose -Case (1). 
 

 
 

Fig. 3. The Time Response of Glucose -Case (2). 
 

 
 

Fig. 4. The Time Response of Glucose -Case (3). 
 
 

 

Case no.   % Case no.   % 

1 0.00% 11 8.60% 

2 32.81% 12 0.00% 

3 9.32% 13 0.00% 

4 0.00% 14 0.00% 

5 0.00% 15 14.60% 

6 0.00% 16 0.00% 

7 0.00% 17 14.50% 

8 0.00% 18 0.00% 

9 0.00% 19 4.07% 

10 0.00% 20 24.96% 

 ′(   )  ′(    ) 

60 <200 

120 <140 
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Fig. 5. The Time Response of Glucose -Case (4). 
 

 
 

Fig. 6.The Time Response of Glucose -Case (5). 
 

 
 

Fig. 7. The Time Response of Glucose -Case (6). 
 
 
 

 
 

Fig. 8. The Time Response of Glucose -Case (7). 
 

Fig. 9. The Time Response of Glucose -Case (8). 
 

Fig. 10. The Time Response of Glucose -Case (9). 
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Fig. 11. The Time Response of Glucose -Case (10). 
 

 
 
Fig. 12. The Time Response of Glucose -Case (11). 

 

 
 

Fig. 13. The Time Response of Glucose -Case (12). 
 

 
 

Fig. 14. The Time Response of Glucose -Case (13). 
 

 
 
Fig. 15. The Time Response of Glucose -Case (14). 

 

 
 

Fig. 16. The Time Response of Glucose -Case (15). 
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Fig. 17. The Time Response of Glucose -Case (16). 
 

 
 

Fig. 18. The Time Response of Glucose -Case (17). 
 

 
 

Fig. 19. The Time Response of Glucose -Case (18). 
 

 
 

Fig. 20. The Time Response of Glucose -Case (19). 
 

 
 

Fig. 21. The Time Response of Glucose -Case (20). 
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  الخلاصة
  

باستخدام ھذه الطریقة  ،في ھذا البحث تم استخدام طریقة مستحدثة للنمذجة بصورة عملیة في عملیة نمذجة منظومة السیطرة على تركیز السكر في الدم
ریاضي  سیتم الحصول على مجموعة من النماذج الریاضیة بدلا من نموذج واحد لتعویض الخسارة فى المعلومات الناجمة عن عملیة استحصال اقرب نموذج

ت في النموذج الریاضي بین قیمتین ھذا التنوع في النماذج الریاضیة داخل المنظومة الواحدة ناجم عن تغییر المعاملا. یحاكي المنظومة بصورة مقربة
ایضا في ھذا البحث تم تطویر طریقة تشخیصیة ریاضیة لاكتشاف اي خلل في منظومة السیطرة على السكر في الدم من خلال مراقبة تاثیر ھذا  ،محددتین

لة بالتعاون مع المركز الوطني للسكري فى الجامعة و تم تطبیق ھذه الطریقة بصورة عملیة على عشرین حا. التغییر في المعاملات على استجابة المنظومة
  .المستنصریة
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